Factorization challenge

classic Classic list List threaded Threaded
3 messages Options
Reply | Threaded
Open this post in threaded view
|

Factorization challenge

Raimo Niskanen-2
Hi all!

For an improved long period PRNG it is needed to factor a certain number
into prime numbers.

The number is: 2^928 - 1

So if anyone has got the resources to do that I would be grateful!

Good luck to any number crunchers out there!
--

/ Raimo Niskanen, Erlang/OTP, Ericsson AB
_______________________________________________
erlang-questions mailing list
[hidden email]
http://erlang.org/mailman/listinfo/erlang-questions
Reply | Threaded
Open this post in threaded view
|

Re: Factorization challenge

Vlad Dumitrescu-2
  • 2269 007733 883335 972287 082669 296112 915239 349672 942191 252221 331572 442536 403137 824056 312817 862695 551072 066953 619064 625508 194663 368599 769448 406663 254670 871573 830845 597595 897613 333042 429214 224697 474472 410882 236254 024057 110212 260250 671521 235807 709272 244389 361641 091086 035023 229622 419455 (280 digits) = 3 × 5 × 17 × 59 × 233 × 257 × 929 × 1103 × 2089 × 5569 × 8353 × 59393 × 65537 × 3 033169 × 39 594977 × 107 367629 × 536 903681 × 748 264961 × 2245 984577 × 239 686663 718401 × 15 929619 591127 520827 829953 × 82280 195167 144119 832390 568177 × 6033 312171 721035 031651 315652 130497 (34 digits) × 18 774318 450142 955120 650303 957350 521748 903233 (44 digits) × 15 694604 006012 505869 851221 169365 594050 637743 819041 (50 digits)
(unverified, as returned by https://www.alpertron.com.ar/ECM.HTM)

regards,
Vlad


On Fri, May 18, 2018 at 4:40 PM Raimo Niskanen <[hidden email]> wrote:
Hi all!

For an improved long period PRNG it is needed to factor a certain number
into prime numbers.

The number is: 2^928 - 1

So if anyone has got the resources to do that I would be grateful!

Good luck to any number crunchers out there!
--

/ Raimo Niskanen, Erlang/OTP, Ericsson AB
_______________________________________________
erlang-questions mailing list
[hidden email]
http://erlang.org/mailman/listinfo/erlang-questions

_______________________________________________
erlang-questions mailing list
[hidden email]
http://erlang.org/mailman/listinfo/erlang-questions
Reply | Threaded
Open this post in threaded view
|

Re: Factorization challenge

Raimo Niskanen-2
On Fri, May 18, 2018 at 07:15:00PM +0200, Vlad Dumitrescu wrote:

>    - 2269 007733 883335 972287 082669 296112 915239 349672 942191 252221
>    331572 442536 403137 824056 312817 862695 551072 066953 619064 625508
>    194663 368599 769448 406663 254670 871573 830845 597595 897613 333042
>    429214 224697 474472 410882 236254 024057 110212 260250 671521 235807
>    709272 244389 361641 091086 035023 229622 419455 (280 digits) = 3 × 5 × 17
>    × 59 × 233 × 257 × 929 × 1103 × 2089 × 5569 × 8353 × 59393 × 65537 × 3
>    033169 × 39 594977 × 107 367629 × 536 903681 × 748 264961 × 2245 984577 ×
>    239 686663 718401 × 15 929619 591127 520827 829953 × 82280 195167 144119
>    832390 568177 × 6033 312171 721035 031651 315652 130497 (34 digits) × 18
>    774318 450142 955120 650303 957350 521748 903233 (44 digits) × 15 694604
>    006012 505869 851221 169365 594050 637743 819041 (50 digits)
>
> (unverified, as returned by https://www.alpertron.com.ar/ECM.HTM)

Amazing!

1> (1 bsl 928) - 1 =:= 3 * 5 * 17 * 59 * 233 * 257 * 929 * 1103 * 2089 * 5569
* 8353 * 59393 * 65537 * 3033169 * 39594977 * 107367629 * 536903681 *
748264961 * 2245984577 * 239686663718401 * 15929619591127520827829953 *
82280195167144119832390568177 * 6033312171721035031651315652130497 *
18774318450142955120650303957350521748903233 *
15694604006012505869851221169365594050637743819041.

=> true

The numbers add up!  (multiply up)  And WolframAlpha confirms all factors
to be prime numbers.

Excellent!  Thank you !

/ Raimo


>
> regards,
> Vlad
>
>
> On Fri, May 18, 2018 at 4:40 PM Raimo Niskanen <
> [hidden email]> wrote:
>
> > Hi all!
> >
> > For an improved long period PRNG it is needed to factor a certain number
> > into prime numbers.
> >
> > The number is: 2^928 - 1
> >
> > So if anyone has got the resources to do that I would be grateful!
> >
> > Good luck to any number crunchers out there!
> > --
> >
> > / Raimo Niskanen, Erlang/OTP, Ericsson AB
> > _______________________________________________
> > erlang-questions mailing list
> > [hidden email]
> > http://erlang.org/mailman/listinfo/erlang-questions
> >

> _______________________________________________
> erlang-questions mailing list
> [hidden email]
> http://erlang.org/mailman/listinfo/erlang-questions


--

/ Raimo Niskanen, Erlang/OTP, Ericsson AB
_______________________________________________
erlang-questions mailing list
[hidden email]
http://erlang.org/mailman/listinfo/erlang-questions